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You need an 
RTOS! 

What is the Challenge? 

Nowadays, embedded systems and more generally 
cyber-physical systems (CPS) are present 
everywhere in our daily lives. Computers 
embedded in planes and trains, wearable 
computing objects and medical devices are only a 
few examples of such technology-intensive devices 
in our modern society. As many human lives or 
huge financial investments often rely on these 
critical systems, they cannot experience failure of 
any kind. 

Critical systems must operate in situations where 
any failure can have from annoying to dramatic 
consequences. Unlike a PC, a cruise control system 
does not have a reset button! The system must be 
“very” reliable, e.g., the probability of failure must 
be extremely improbable. Most CPS are thus “real-
time”. This is not just being “fast”, but being 
“always on time” in a very precise way. Being late 
is as bad as being wrong. In a braking system or in 
an autonomous drone, we cannot afford any delay 
in reacting to an event without hitting a wall or 
falling on the ground. Finally, embedded systems 
often have limited resources (e.g. memory) and must 
operate under constraints that need to be optimized 
(e.g. use low power). Meeting the deadlines can be 
crucial for the system (i.e., the deadlines are 
considered to be hard) in order to avoid 
catastrophic consequences. Examples include anti-
lock braking system (ABS) avoiding uncontrolled 
skidding or aircraft control. But very often in the 
applications, while deadline misses can be tolerated 
(i.e. the deadlines are soft or firm), their amount and 
frequency must be limited for system correctness or 
for system Quality of Service (QoS). Examples 
include video streaming (bound the packet loss 
ratio) or digital audio processing (conversion, 
compression and routing) in order to bound the 
latency for instance. 

So, what are the requirements for a modern 
embedded system?  

The system must be highly efficient and provide 
high computing performance under strict constraints 
such as reduced size and power consumption. It 
must be highly reliable: failures must be “extremely 
improbable” and the system must be fault-tolerant. 
The system must respect real-time constraints and 
execute all computations predictably in a timely 
manner without any delay. Finally, it must be 
secure and enforce protection against illegitimate 
use and access. 

Why an Operating System? 
Why not Bare Metal? 

As computer systems become more and more 
complex, their control and application software 
grows larger and more complex. It is not possible 
for every application programmer to know and 
understand all these technical details and 
specifications: the effort would be too large to 
produce the code and the resulting quality would 
be too low. Moreover, the various and often limited 
hardware resources must be managed efficiently 
(often optimally) and this is a very challenging 
problem. This is why it is very difficult and costly to 
build applications from scratch for any target 
hardware but the simplest microcontrollers. The 
bare metal “single control loop” system lacks the 
ability to introduce fail-safe, recovery or smooth 
degradation features, to have flexible modes of 
control, etc. Basically, it introduces “Single Point of 
Failure”. The “bare metal” paradigm is no longer 
an acceptable, feasible and cost-effective solution. 
In the following we will present rational arguments 
in favor of Operating Systems. 

The Operating System (OS) is a software that acts as 
intermediary between applications and computer 
hardware. 

The OS provides a development environment for 
applications that aims to be an efficient resource 
manager as well as an elegant hardware 
abstraction. 

The concept of operating system is not new. Early 
OS were introduced for general-purpose computers 
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in the 1960’s. Later they evolved into systems like 
DOS, MS-Windows, and modern systems such as 
Android, Linux or Mac OS X are familiar. 

As an abstraction layer the OS hides the hardware 
complexity. The abstraction includes the notion of 
processes (abstraction of the CPU), files (abstraction 
of the disk) and virtual memory (abstraction of the 
RAM), etc. The OS is the “platform”. Programs 
written for a given OS will run on any hardware 
architecture supported by that OS. Bare metal 
applications on the other hand have to be 
significantly rewritten to work properly on new 
hardware. Porting legacy code on a new processor 
is therefore costly and time-consuming. Using an 
OS makes this effortless and makes it easy to 
leverage new hardware features brought by the 
latest generations of embedded devices. 

As resource manager the OS includes advanced 
data structures and algorithms for resource sharing, 
process scheduling, memory management, context 
switching, I/O managements and interrupt handling. 

These features provide a higher-level abstraction to 
the application programmer by means of efficient 
and elegant concepts, drastically reducing the 
apparent complexity of the hardware and therefore 
enabling more complex and more reliable 
applications. 

Why not a General Purpose OS? 
Why an RTOS? 

In embedded systems, GPOS are usually poor 
choices. 

GPOS are not very reliable: the problem with 
operating systems such a MS Windows and Linux is 
that they do not satisfy the above requirements. 
High performance is not the issue: there are high 
performance versions of those OS. But reliability is 
by far not enough for any mission-critical or safety-
critical embedded system. To be used in those 
embedded systems, the OS must be “very” reliable, 
e.g., the average probability per flight hour for 
catastrophic failure conditions must be less than 
10−9 or “extremely improbable”. Testing is not 
enough; quality must be proven. GPOS contain 
millions of lines of code and it is virtually 

impossible to prove that they are reliable enough. 
Reliability should be built-in “by design”. 

GPOS are neither real-time nor predictable: GPOS 
are “best effort” in that they execute programs fairly. 
They are designed to optimize the average 
execution time of jobs and not to bound the worst 
case execution time. GPOS do not give any  
guarantee concerning the limitation of delays or 
meeting deadlines.They also use many “dynamic” 
(i.e. non deterministic) programming features. GPOS 
are not designed for real-time predictable behavior. 

GPOS are not fully secured: some GPOS are more 
or less “secured” but their size, variability and 
“openness” makes them vulnerable to security 
threats. Having the security required for “trusted 
computing platforms”, such as those in money cards, 
also must be built-in by design. 

GPOS are “too large” and “use too many resources” 
for many embedded platforms. The reason is mainly 
that they need to have features that an embedded 
system does not need, such as elaborate Graphical 
User Interfaces, they need to run a large variety of 
user programs and support many hardware devices. 
An embedded system only needs to support a few 
specific programs required for a given application, 
and must only support a few devices on the target 
hardware. Being too large also means it’s virtually 
impossible to prove that they are correct. 

For all the above reasons, since the late 1970’s a 
new kind of OS has been created: the Real-Time 
Operating Systems (RTOS). 

RTOS are reliable and predictable: they are 
designed to bound the maximal duration of critical 

GPOS RTOS 

optimize the average case optimize the worst case 

maximize throughput minimize latency 

schedule fairly schedule timely 

best effort real-time & predictable 

dynamic programs 
open environment 

specific programs 
closed environment 

Unsecured secure 
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operations. Critical operations include OS calls and 
interrupt handling. The designer optimizes the 
system behavior for the worst case. Some RTOS are 
even “certifiable” to satisfy the strictest safety norms, 
e.g. ISO-26262 provides a standard for functional 
safety management for automotive applications or 
DO-178B a software certification standard for 
airborne systems on commercial aircraft. The RTOS 
manages the resources and schedules the programs 
timely and minimizes the latency. Specific and 
advanced process schedulers (e.g. Rate Monotonic 
or Earliest Deadline First) are required to “prove” 
that the system is always on time while general 
purpose schedulers (typically Round Robin of Unix-
like and MS Windows systems) cause deadline 
misses even for weakly loaded systems.  

Why can’t we use General 
Purpose Schedulers? 
Why Real-Time Schedulers? 

Example: Adaptive Cruise Control 

 

Consider a road vehicle cruise control that adjusts 
the vehicle speed to maintain a safe distance from 
the front vehicle (the brown car “follows” the peach 
one on our schema). An on-board sensor (radar or 
laser) periodically determines the distance and the 
speed of the front vehicle; based upon those 
variables the system adjusts automatically the speed 
of the following vehicle. Of course the driver can, at 
any time, brake and disable this automatic system.  

The Model 

In this illustrative example we will consider, for the 
sake of simplicity, a system composed of three real-
time periodic tasks: T1 displays the front vehicle 
distance, T2 adjusts the car speed and T3 disables 
the system (user brake). T3 must be very reactive 
and repeats every 5 milliseconds, T2 is also quite 
critical and repeats every 10 milliseconds while T1 

is not crucial for the system safety and repeats every 
20 milliseconds. Each task corresponds to a 
difference piece of code executed periodically. In 
the following, each task instance is called job. Job 
releases and deadlines are represented using arrows 
on the following figures. Let us assume, for the sake 
of simplicity, that for each task the deadline 
corresponds to the next release. Period, deadline 
and execution time (actually an upper-bound on the 
execution time) are summarized in this table. 

 
Task 

Execution 
time 
(ms) 

Period & 
deadline 

(ms) 

 
Load 

T1-displaying 4 20 20% 

T2-adjusting speed 2 10 20% 

T3-disabling 3 5 60% 

    100% 

The goal of General Purpose Schedulers is to fairly 
share the processing resource — e.g. the CPU – and 
provide good average process response time. The 
key idea is to assign time slices to each process in 
equal portions and in a circular order. This is Round 
Robin scheduler, a typical scheme for most GPOS. 

Round Robin 

 

Round Robin does not take into account process 
timing requirements nor deadlines. Given our three 
tasks, Round Robin will assign 1 quantum every 
three quanta (at least while the other two tasks are 
active). For the sake of simplicity, we will assume 
that the quantum duration is 1 millisecond. That 
schedule is catastrophic for critical tasks like T3. In 
the best case Round Robin assigns the red quanta to 
T3. In that case T3 misses a large portion of its 
deadlines and the lateness for the five first jobs are 2, 
4, 2, 0, 2 milliseconds, respectively. 

Meanwhile there exists a simple real-time scheduler, 
RM, that feasibly schedules the same system. 

5 10 15 20 25 time0

latenesslatenesslateness

T3

T2

T1

lateness
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Rate Monotonic – RM 

 

The Rate Monotonic (RM) is a preemptive 
scheduling algorithm used in real-time operating 
systems (RTOS) with a static-priority scheduling 
class. The static priorities are assigned on the basis 
of the cycle duration of the job: the shorter the 
cycle duration is, the higher is the job's priority. In 
our system, and according to RM, T3 receives the 
highest priority, T1 the lowest priority and T2 
middle priority. This time all tasks are on time using 
RM (notice that the schedule repeats every 20 
milliseconds) while Round Robin requires a faster 
CPU in order to meet the deadlines. The RM real-
time scheduler has an outstanding property: RM 
feasibly schedules any system not overloaded, i.e., 
workloads not larger than 100% (at least for 
harmonic task periods like in our system where all 
task periods are multiple of 5 milliseconds). In real 
systems this outstanding property must be adapted 

carefully since the system is preemptive and we 
cannot neglect the switching time and system 
overhead. 

What’s next 

If you want to know more about Real-Time 
Operating Systems, the next paper in this series is 
“Challenges for Next Generation RTOS” White 
Paper #2. The paper addresses advanced concepts 
and challenges for Next Generation RTOS: system 
overhead (e.g., preemption delay), modern 
multicore hardware platforms, multi-threading and 
parallelism issues, advanced real-time scheduling 
algorithms. 
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