
 White Paper #1

HIPPEROS S.A. You need an RTOS! - page 1

You need an
RTOS!

What is the Challenge?

Nowadays, embedded systems and more generally
cyber-physical systems (CPS) are present
everywhere in our daily lives. Computers
embedded in planes and trains, wearable
computing objects and medical devices are only a
few examples of such technology-intensive devices
in our modern society. As many human lives or
huge financial investments often rely on these
critical systems, they cannot experience failure of
any kind.

Critical systems must operate in situations where
any failure can have from annoying to dramatic
consequences. Unlike a PC, a cruise control system
does not have a reset button! The system must be
“very” reliable, e.g., the probability of failure must
be extremely improbable. Most CPS are thus “real-
time”. This is not just being “fast”, but being
“always on time” in a very precise way. Being late
is as bad as being wrong. In a braking system or in
an autonomous drone, we cannot afford any delay
in reacting to an event without hitting a wall or
falling on the ground. Finally, embedded systems
often have limited resources (e.g. memory) and must
operate under constraints that need to be optimized
(e.g. use low power). Meeting the deadlines can be
crucial for the system (i.e., the deadlines are
considered to be hard) in order to avoid
catastrophic consequences. Examples include anti-
lock braking system (ABS) avoiding uncontrolled
skidding or aircraft control. But very often in the
applications, while deadline misses can be tolerated
(i.e. the deadlines are soft or firm), their amount and
frequency must be limited for system correctness or
for system Quality of Service (QoS). Examples
include video streaming (bound the packet loss
ratio) or digital audio processing (conversion,
compression and routing) in order to bound the
latency for instance.

So, what are the requirements for a modern
embedded system?

The system must be highly efficient and provide
high computing performance under strict constraints
such as reduced size and power consumption. It
must be highly reliable: failures must be “extremely
improbable” and the system must be fault-tolerant.
The system must respect real-time constraints and
execute all computations predictably in a timely
manner without any delay. Finally, it must be
secure and enforce protection against illegitimate
use and access.

Why an Operating System?
Why not Bare Metal?

As computer systems become more and more
complex, their control and application software
grows larger and more complex. It is not possible
for every application programmer to know and
understand all these technical details and
specifications: the effort would be too large to
produce the code and the resulting quality would
be too low. Moreover, the various and often limited
hardware resources must be managed efficiently
(often optimally) and this is a very challenging
problem. This is why it is very difficult and costly to
build applications from scratch for any target
hardware but the simplest microcontrollers. The
bare metal “single control loop” system lacks the
ability to introduce fail-safe, recovery or smooth
degradation features, to have flexible modes of
control, etc. Basically, it introduces “Single Point of
Failure”. The “bare metal” paradigm is no longer
an acceptable, feasible and cost-effective solution.
In the following we will present rational arguments
in favor of Operating Systems.

The Operating System (OS) is a software that acts as
intermediary between applications and computer
hardware.

The OS provides a development environment for
applications that aims to be an efficient resource
manager as well as an elegant hardware
abstraction.

The concept of operating system is not new. Early
OS were introduced for general-purpose computers

 White Paper #1

HIPPEROS S.A. You need an RTOS! - page 2

in the 1960’s. Later they evolved into systems like
DOS, MS-Windows, and modern systems such as
Android, Linux or Mac OS X are familiar.

As an abstraction layer the OS hides the hardware
complexity. The abstraction includes the notion of
processes (abstraction of the CPU), files (abstraction
of the disk) and virtual memory (abstraction of the
RAM), etc. The OS is the “platform”. Programs
written for a given OS will run on any hardware
architecture supported by that OS. Bare metal
applications on the other hand have to be
significantly rewritten to work properly on new
hardware. Porting legacy code on a new processor
is therefore costly and time-consuming. Using an
OS makes this effortless and makes it easy to
leverage new hardware features brought by the
latest generations of embedded devices.

As resource manager the OS includes advanced
data structures and algorithms for resource sharing,
process scheduling, memory management, context
switching, I/O managements and interrupt handling.

These features provide a higher-level abstraction to
the application programmer by means of efficient
and elegant concepts, drastically reducing the
apparent complexity of the hardware and therefore
enabling more complex and more reliable
applications.

Why not a General Purpose OS?
Why an RTOS?

In embedded systems, GPOS are usually poor
choices.

GPOS are not very reliable: the problem with
operating systems such a MS Windows and Linux is
that they do not satisfy the above requirements.
High performance is not the issue: there are high
performance versions of those OS. But reliability is
by far not enough for any mission-critical or safety-
critical embedded system. To be used in those
embedded systems, the OS must be “very” reliable,
e.g., the average probability per flight hour for
catastrophic failure conditions must be less than
10−9 or “extremely improbable”. Testing is not
enough; quality must be proven. GPOS contain
millions of lines of code and it is virtually

impossible to prove that they are reliable enough.
Reliability should be built-in “by design”.

GPOS are neither real-time nor predictable: GPOS
are “best effort” in that they execute programs fairly.
They are designed to optimize the average
execution time of jobs and not to bound the worst
case execution time. GPOS do not give any
guarantee concerning the limitation of delays or
meeting deadlines.They also use many “dynamic”
(i.e. non deterministic) programming features. GPOS
are not designed for real-time predictable behavior.

GPOS are not fully secured: some GPOS are more
or less “secured” but their size, variability and
“openness” makes them vulnerable to security
threats. Having the security required for “trusted
computing platforms”, such as those in money cards,
also must be built-in by design.

GPOS are “too large” and “use too many resources”
for many embedded platforms. The reason is mainly
that they need to have features that an embedded
system does not need, such as elaborate Graphical
User Interfaces, they need to run a large variety of
user programs and support many hardware devices.
An embedded system only needs to support a few
specific programs required for a given application,
and must only support a few devices on the target
hardware. Being too large also means it’s virtually
impossible to prove that they are correct.

For all the above reasons, since the late 1970’s a
new kind of OS has been created: the Real-Time
Operating Systems (RTOS).

RTOS are reliable and predictable: they are
designed to bound the maximal duration of critical

GPOS RTOS

optimize the average case optimize the worst case

maximize throughput minimize latency

schedule fairly schedule timely

best effort real-time & predictable

dynamic programs
open environment

specific programs
closed environment

Unsecured secure

 White Paper #1

HIPPEROS S.A. You need an RTOS! - page 3

operations. Critical operations include OS calls and
interrupt handling. The designer optimizes the
system behavior for the worst case. Some RTOS are
even “certifiable” to satisfy the strictest safety norms,
e.g. ISO-26262 provides a standard for functional
safety management for automotive applications or
DO-178B a software certification standard for
airborne systems on commercial aircraft. The RTOS
manages the resources and schedules the programs
timely and minimizes the latency. Specific and
advanced process schedulers (e.g. Rate Monotonic
or Earliest Deadline First) are required to “prove”
that the system is always on time while general
purpose schedulers (typically Round Robin of Unix-
like and MS Windows systems) cause deadline
misses even for weakly loaded systems.

Why can’t we use General
Purpose Schedulers?
Why Real-Time Schedulers?

Example: Adaptive Cruise Control

Consider a road vehicle cruise control that adjusts
the vehicle speed to maintain a safe distance from
the front vehicle (the brown car “follows” the peach
one on our schema). An on-board sensor (radar or
laser) periodically determines the distance and the
speed of the front vehicle; based upon those
variables the system adjusts automatically the speed
of the following vehicle. Of course the driver can, at
any time, brake and disable this automatic system.

The Model

In this illustrative example we will consider, for the
sake of simplicity, a system composed of three real-
time periodic tasks: T1 displays the front vehicle
distance, T2 adjusts the car speed and T3 disables
the system (user brake). T3 must be very reactive
and repeats every 5 milliseconds, T2 is also quite
critical and repeats every 10 milliseconds while T1

is not crucial for the system safety and repeats every
20 milliseconds. Each task corresponds to a
difference piece of code executed periodically. In
the following, each task instance is called job. Job
releases and deadlines are represented using arrows
on the following figures. Let us assume, for the sake
of simplicity, that for each task the deadline
corresponds to the next release. Period, deadline
and execution time (actually an upper-bound on the
execution time) are summarized in this table.

Task

Execution
time
(ms)

Period &
deadline

(ms)

Load

T1-displaying 4 20 20%

T2-adjusting speed 2 10 20%

T3-disabling 3 5 60%

 100%

The goal of General Purpose Schedulers is to fairly
share the processing resource — e.g. the CPU – and
provide good average process response time. The
key idea is to assign time slices to each process in
equal portions and in a circular order. This is Round
Robin scheduler, a typical scheme for most GPOS.

Round Robin

Round Robin does not take into account process
timing requirements nor deadlines. Given our three
tasks, Round Robin will assign 1 quantum every
three quanta (at least while the other two tasks are
active). For the sake of simplicity, we will assume
that the quantum duration is 1 millisecond. That
schedule is catastrophic for critical tasks like T3. In
the best case Round Robin assigns the red quanta to
T3. In that case T3 misses a large portion of its
deadlines and the lateness for the five first jobs are 2,
4, 2, 0, 2 milliseconds, respectively.

Meanwhile there exists a simple real-time scheduler,
RM, that feasibly schedules the same system.

5 10 15 20 25 time0

latenesslatenesslateness

T3

T2

T1

lateness

 White Paper #1

HIPPEROS S.A. You need an RTOS! - page 4

Rate Monotonic – RM

The Rate Monotonic (RM) is a preemptive
scheduling algorithm used in real-time operating
systems (RTOS) with a static-priority scheduling
class. The static priorities are assigned on the basis
of the cycle duration of the job: the shorter the
cycle duration is, the higher is the job's priority. In
our system, and according to RM, T3 receives the
highest priority, T1 the lowest priority and T2
middle priority. This time all tasks are on time using
RM (notice that the schedule repeats every 20
milliseconds) while Round Robin requires a faster
CPU in order to meet the deadlines. The RM real-
time scheduler has an outstanding property: RM
feasibly schedules any system not overloaded, i.e.,
workloads not larger than 100% (at least for
harmonic task periods like in our system where all
task periods are multiple of 5 milliseconds). In real
systems this outstanding property must be adapted

carefully since the system is preemptive and we
cannot neglect the switching time and system
overhead.

What’s next

If you want to know more about Real-Time
Operating Systems, the next paper in this series is
“Challenges for Next Generation RTOS” White
Paper #2. The paper addresses advanced concepts
and challenges for Next Generation RTOS: system
overhead (e.g., preemption delay), modern
multicore hardware platforms, multi-threading and
parallelism issues, advanced real-time scheduling
algorithms.

References
1. “Real-Time Systems”, J.W.S. Liu, Prentice Hall, 2000.
2. “Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment”, C.L. Liu and J.W.
Layland, Journal of the ACM, Volume 20 Issue 1, Jan.
1973.

3. “Multiprocessor scheduling for real-time systems”,
Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo.
Springer, 2014.

Joël GOOSSENS, PhD
HIPPEROS Chief Scientific Evangelist

Joël Goossens is Professor at the Université libre de Bruxelles, Belgium (ULB), since October 2006. He founded
and chairs the “Parallel Architectures for Real-Time Systems” research group. His main research interests are
presently in real-time scheduling theory, real-time operating systems and embedded systems.

Joël Goossens is co-Founder of the HIPPEROS company and serves as Chief Scientist. His main activities concern
the R&D, research projects and diffusion of innovations.

HIPPEROS S.A.
Predictable Real-Time, Proven Performance
Rue A. Piccard, 48, B-6041 Gosselies, BELGIUM
www.hipperos.com

5 10 15 20 25 time0

T3

T2

T1

